
Cross Lingual Query Dependent Snippet
Generation

Pinaki Bhaskar, Sivaji Bandyopadhyay

Computer Science and Engineering Department,

 Jadavpur University
Kolkata – 700032, India

Abstract— The present paper describes the development of a
cross lingual query dependent snippet generation module. It is
a language independent module, so it also performs as a
multilingual snippet generation module. It is a module of the
Cross Lingual Information Access (CLIA) system. This
module takes the query and content of each retrieved
document and generates a query dependent snippet for each
retrieved document. It highlights all the query words, which
appear in the generated snippet. The algorithm of this module
based on the sentence extraction, sentence scoring and
sentence ranking. Subjective evaluation has been done to
evaluate the output of this module. English snippet got the
best evaluation score, i.e. 1 and overall average evaluation
score of 0.83 has been achieved in the scale of 0 to 1.

Keywords— Snippet Generation, Summarization, Information
Extraction, Information Retrieval, Cross Lingual,
Multilingual.

I. INTRODUCTION

Snippet is the most salient information in a document or
in a retrieved documents (in case of search engine) and
conveying it in short space, became an active field of
research in both Information Retrieval (IR) and Natural
Language Processing (NLP) communities. As per
Wikipedia, a snippet is defined as a small piece of
something, it may in more specific contexts refer to: (i)
Snippet (programming), a short reusable piece of computer
source code, (ii) Sampling (music), the use of a short
phrase of a recording as an element in a new piece of music
and (iii) Snipets, (sic) a series of short TV interstitials
produced by Kaiser Broadcasting and Field
Communications in the 1970's and early 1980's. But in the
case of Information Retrieval or any Search Engine,
Snippet is a one or two line query-biased summary of the
retrieved document.

Snippet generation shares some basic techniques with
indexing as both are concerned with identification of the
essence of a document. Also, high quality snippet
generation requires sophisticated NLP techniques in order
to deal with various Parts Of Speech (POS) taxonomy and
inherent subjectivity. Multilingual or cross lingual snippet
generation requires creating a snippet from a set of text or
sentence in multiple languages which presents in a same
document. Most of the times, the text or sentences of each
language does not convey or contains same information. So,
identify and extract information from sentences of each
language using same system is a very challenging task in
NLP.

As said in [1] Snippets are used by almost every text
search engine to complement ranking scheme in order to
effectively handle user searches, which are inherently
ambiguous and whose relevance semantics are difficult to
assess. Generally, an effective snippet should be relevant,
concise and if possible, fluent. It means that the snippet
should cover the most important information in the original
document about the query, no matter in which language is
it. But relevancy of the snippet or how to judge the
relevancy of a snippet is a big debatable issue. Should
snippet relevant to the query or to the document?

The consortia of CLIA formed in the year of 2006 with
10 consortia members of IIT Bombay, IIT Kgp, IIIT
Hyderabad, CADC Pune, CDAC Noida, Jadavpur
University, AU-KBC, AU-CEG, ISI Kolkata and Utkal
University. The objective of this consortium is to develop a
Cross Lingual Information Access system, which can cross
search in three different languages: One IL (Indian
Language), Hindi and English. So in the CLIA system if
you give and query in any of the six Indian languages
(Hindi, Marathi, Bengali, Punjabi, Tamil and Telugu),
system will search for the documents in that specific Indian
language in which query was given and in Hindi as well as
in English. The CLIA system there are two cross lingual
search available one is IL-Hindi and another is IL-English.
Hence we had to develop a Snippet generation module
which can generated snippet from documents in any of
these seven languages i.e. English and six Indian languages
those are mention before or from the document in mixed
languages.

In this paper, a cross lingual query dependent snippet
generation system has been proposed based on the sentence
scoring and sentence ranking. During initial preprocessing,
text fragments are filtered and identified from the document;
those are later ranked using some calculated score or
weight. We define our text fragments as sentence.

II. RELATED WORK

Most of the research works related to this task or field is
on development of summarization system. Very little and
less number of research works have been done on snippet
generation. Currently, most successful summarization
systems follow the extractive summarization framework.
These systems first rank all the sentences in the original
document set and then select the most salient sentences to
compose summaries for a good coverage of the concepts.
For the purpose of creating more concise and fluent

Pinnaki Bhaskar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4603 - 4609

4603

summaries, some intensive post-processing approaches are
also appended on the extracted sentences. For example,
redundancy removal [2] and sentence compression [3]
approaches are used to make the summary more concise.
Sentence re-ordering approaches [4] are used to make the
summary more fluent. In most systems, these approaches
are treated as independent steps. A sequential process is
usually adopted in their implementation, applying the
various approaches one after another.

A lot of research work has been done in the domain of
both query dependent and independent summarization.
MEAD [5] is a centroid based multi document summarizer,
which generates summaries using cluster centroids
produced by topic detection and tracking system. NeATS
[6] selects important content using sentence position, term
frequency, topic signature and term clustering. XDoX [7]
identifies the most salient themes within the document set
by passage clustering and then composes an extraction
summary, which reflects these main themes.

Graph based methods have been proposed for generating
query independent summaries. Websumm [8] uses a graph-
connectivity model to identify salient information.
Reference [9] proposed the methodology of correlated
summarization for multiple news articles. In the domain of
single document summarization a system for query-specific
document summarization has been proposed [10] based on
the concept of document graph. A document graph based
query focused multi-document summarization system has
been described by [11], [12] and [13].

Reference [14] presents an investigation into the utility
of document summarization in the context of IR, more
specifically in the application of so-called query-biased
summaries: summaries customized to reflect the
information need expressed in a query. Employed in the
retrieved document list displayed after retrieval took place,
the summaries’ utility was evaluated in a task-based
environment by measuring users’ speed and accuracy in
identifying relevant documents. This was compared to the
performance achieved when users were presented with the
more typical output of an IR system: a static predefined
summary composed of the title and first few sentences of
retrieved documents. The results from the evaluation
indicate that the use of query-biased summaries
significantly improves both the accuracy and speed of user
relevance judgments.

Reference [15] explored the algorithms and data
structures required as part of a search engine to allow
efficient generation of query-biased snippets. They began
by proposing and analyzing a document compression
method that reduces snippet generation time by 58% over a
baseline using the zlib compression library. These
experiments revealed that finding documents on secondary
storage dominates the total cost of generating snippets, and
so caching documents in RAM is essential for a fast snippet
generation process. Using simulation, they examined
snippet generation performance for different size RAM
caches. Finally they proposed and analyzed document
reordering and compaction, revealing a scheme that
increases the number of document cache hits with only a
marginal affect on snippet quality. They demand that their

scheme effectively doubles the number of documents that
can fit in a fixed size cache.

Reference [1] presented a system, eXtract, which
addressed this important yet open problem. They identified
that a good XML result snippet should be a self-contained
meaningful information unit of a small size that effectively
summarizes this query result and differentiates it from
others, according to which users can quickly assess the
relevance of the query result. They have designed and
implemented a novel algorithm to satisfy these
requirements and verified its efficiency and effectiveness
through experiments.

In the present work, the same sentence scoring and
ranking approach of [12] has been followed. While the
basic unit of clustering in [12] is a paragraph, sentences
have been considered as the basic unit in the present work.
After the clusters are developed, the summarization method
is completely different. In [11] work, the minimum-
spanning tree identified over the document graph is
identified as the summary. But in the present work we have
parsed the top ranked sentences and compressed the
sentences removing the unimportant or irrelevant phrases
of the sentence.

III. SYSTEM ARCHITECTURE

A. CLIA System

In this section the overview of the system framework of
the current CLIA system has been described. The CLIA
system has been developed on the basic architecture of
Nutch [16], which use the architecture of Lucene [17].
Nutch is an open source search engine, which supports only
the monolingual search in English, etc. The architecture of
Nutch has been used in CLIA. Various new or modified
features of CLIA system have been added or modified into
Nutch architecture. The main feature of CLIA is the cross
lingual search, which needs the query translation, snippet
translation and language independent output generation
module such as Snippet Generation and Summary
Generation.

Higher-level system architecture of CLIA system has
been shown in the figure 1. The major module in the output
processing of the CLIA system is the Snippet Generation
module, which generates and displays the snippets of all the
retrieved documents.

B. Snippet Generation Module

The Language Independent Snippet Generation system
framework has been shown in the figure 2. The system is
defined in five parts like i) Key Terms Extraction, ii)
Sentence Extraction, iii) Top Sentence Identification, iv)
Snippet Unit Identification and finally v) Snippet
Generation which were described thoroughly in the
following sections.

IV. KEY TERM EXTRACTION

Key Term Extraction module has three sub modules like
Query Term extraction, Title Words Extraction and Meta
Keywords Extraction. All these three sub modules have
been described in the following sections.

Pinnaki Bhaskar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4603 - 4609

4604

Fig. 1 Higher-level system architecture of CLIA system

Fig. 2 System architecture of Snippet Generation module.

A. Query Term Extraction

First the query given by the user is parsed using the
Query Parsing module. In this Query Parsing module, the
Multiword Word Expressions (MWE) and Named Entities
(NE) are identified and tagged in the given query using the
corresponding engines. All the stop words are removed
from the untagged query words. Then, if user wants the
cross lingual search then the query is translated into the
desired language between English or Hindi. The Query
Translation module has both the translation and
transliteration modules.

Query Term Extraction module gets the parsed and
translated query. Now it extracts all the query terms from
the query with their Boolean relations (AND or OR).

B. Title Word Extraction

The title of the retrieved document comes from the index
to the Title Word Extraction module. After removing all the
stop words from the title, all the tile words are also
extracted and used as the keywords of the document in this
system.

C. Meta Keywords extraction

If the meta keywords are available in the meta tag of the
document, the meta keywords field is extracted from the
document and then all the meta keywords from that field
are extracted to use as more keywords of the document. As
these meta keywords are written by the author of the
document itself, these are the most appropriate keywords
regarding the document. Meta keywords are found in most
of the English documents.

V. SENTENCE EXTRACTION

The document text is parsed and the parsed text is used
to generate the snippet. This module will take the parsed
text of the documents as input, filter the input parsed text
and extract all the sentences from the parsed text. So this
module has two sub modules, Text Filterization and
Sentence Extraction.

A. Text Filterization

The parsed text may content some junk or unrecognized
character or symbol. First these kinds of character or
symbols are identified and removed. The text in the query
language are identified and extracted from the document
using the Unicode character list of table1, which has been
collected from Wikipedia [18]. The symbols like dot (.),
coma (,), single quote (‘), double quote (“), ‘!’, ‘?’ etc. are
common for all languages, so these are also listed as
symbols in the table 1.

B. Sentence Extraction

In Sentence Extraction module, filtered parsed text has
been parsed to identify and extract all sentences in the
documents. Sentence identification and extraction is not an
easy task in English document. As the sentence marker ‘.’
(dot) is not only use as a sentence marker, it has other use
also like point and in abbreviation like Mr., Prof., U.S.A.
etc. So it creates lot of ambiguity. A possible list of
abbreviation has to create to minimize the ambiguity. Most
of the times the end quotation (”) placed wrongly at the end
of the sentence like .”. These kinds of ambiguities are
identified and removed to extract all the sentences from the
document.

VI. TOP SENTENCE IDENTIFICATION

All the extracted sentences are now searched for the
keywords i.e. query terms, title words and meta keywords.
Extracted sentences are given some weight according to
search and ranked on the basis of the calculated weight. For
this task this module has two sub modules: Weight

Pinnaki Bhaskar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4603 - 4609

4605

Assigning and Sentence Ranking, which are described
bellow.

A. Weight Assigning

This sub module calculates the weights of each sentence
in the document. There are basic three components in the
sentence weight like query term dependent score, title word
dependent score and meta keyword dependent score. These
three components are calculated and added to get the final
weight of a sentence.

TABLE I

UNICODE CHARACTER RANGE FOR EACH LANGUAGE

Language Hexadecimal code ASCII code

English

0030 – 0039 (digit),
0061 – 007A (small

alphabets),
0041 – 005A (capital

alphabets)

48 – 57 (digit),
65 – 90 (small

alphabets),
97 – 122 (capital

alphabets)

Hindi /
Marathi

0901 – 097F 2305 – 2431

Bengali 0981 – 09FA 2433 – 2554

Tamil 0B82 – 0BFA 2946 – 3066

Telugu 0C01 – 0C7F 3073 – 3199

Punjabi 0A01 – 0A75 2561 – 2677

Language
independent
symbols

0021 – 002F, 003A –
0040,

005B – 005E, 007B –
007D

33 – 47, 58 – 64,
91 – 94, 123 - 125

1) Query Term dependent score

Query term dependent score is the most important and
relevant score for snippet. Priority of this query dependent
score is maximum. The query dependent score are
calculated using equation 1.

Qs  Fq 20  nq  q 1  1
fp

q 1

Ns






p









  3











q1

nq



(1)
where, Qs is the query term dependent score of the

sentence s, q is the no. of the query term, nq is the total no.

of query term, fp
q is the possession of the word which was

matched with the query term q in the sentence s, Ns is the
total no. of words in sentence s and

Fq 
0; if querytermqisnot found

1; if query termqis found
 2

At the end of the equation 1, the calculated query term
dependent score is multiplied by 3 to give the most or
highest priority among all the scores.

2) Title Word dependent score

Title word are extracted from the title as described
before in section #. A title word dependent score also
calculated for each sentence. Generally title words are also
the much relevant words of the document. So the sentence

containing any title words can be a relevant sentence of the
main topic of the document. Title word dependent scores
are calculated using equation 3.

Ts  Ft nt  t 1  1
fp

t 1

Ns






p









  2

t0

nt

 3

where, Ts is the title word dependent score of the sentence s,

t is the no. of the title word, nt is the total no. of title word,

fp
t is the possession of the word which was matched with

the title word t in the sentence s, Ns is the total no. of words
in sentence s and

Ft 
0; if titleword t isnot found

1; if titleword t is found
 4

At the end of the equation 3, the calculated title word
dependent score is multiplied by 2 to give the second
highest priority among all the scores.

3) Meta Keyword dependent score

Meta keywords are written in the document by the
author manually at the time of creation of the document. As
this keywords are written manually by the author itself, it
should be relevant to the actual topic or concept of the
document. So, this meta keyword dependent score is also
very important in the weight calculation of the sentences.
Equation 5 has been use to calculate the meta keyword
dependent score.

Ks  Fk nk  k 1  1
fp

k 1

Ns






p











k0

nk

 5

where, Ks is the meta keyword dependent score of the

sentence s, k is the number of the meta keyword, nk is the

total number of meta keyword, fp
k is the possession of the

word which was matched with the meta keyword k in the
sentence s, Ns is the total no. of words in sentence s and

Fk 
0; if metakeyword k isnot found

1; if metakeyword k is found
 6

After calculating all the above three scores the final
weight of each sentence is calculated by simply adding all
the three scores like mentioned in the equation 7.

Ws Qs Ts  Ks 7

where, Ws is the final weight of the sentence s.
In this sub module we have faced a major problem or

challenge to match the query terms or title words or meta
keywords with the document words. To match two words,
both the words should be stemmed and converted to its root
word and then the two root words should be matched.
Because word can be appears in inflected form. So, here the
language specific stemmer has a big role. But to make the
system language independent, the language specific
stemmer could not be used in this system. So, as the query
comes to this module after stemming, the query words are
already stemmed. Hence we were not exactly matching the
query words with the document words, we just searching
for those document words, which are starts with a query
word. E.g. if a query word is ‘India’ and the document
words is ‘Indian’, then both the words matched and

Pinnaki Bhaskar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4603 - 4609

4606

considered as the same word, as ‘Indian’ starts with ‘India’.
In this way we solve the necessity of language specific
stemmer.

B. Sentence Ranking

After calculating weights of all the sentences in the
document, sentences are sorted in descending order of their
weight. In this process if any two or more than two
sentences get equal weight, then they sorted in the
ascending order of their positional value i.e. the sentence
number in the document. So, this Sentence Ranking module
provides the ranked sentences.

Now, top three ranked sentences are taken for the
Snippet Generation. If all these three sentences are small
enough to fit into the snippet without trimming themselves
and overflowing the maximum length of a snippet, then
after this module the system goes directly to the Snippet
Generation module to generate the snippet of the document.
Otherwise it goes through the Snippet Unit Selection
module.

VII. SNIPPET UNIT SELECTION

A. Snippet Unit Extraction

If the total length of the top three ranked sentences of the
document is larger than the maximum length of a snippet,
then all these three sentences are split into snippet units.
Snippet unit is basically a phrase or clause of a sentence.
The snippet units are extracted in this module using the
syntactic information available in the sentences. The
sentences are split into snippet units according to brackets,
semi colon (‘;’), coma (‘,’) etc.

B. Weight Assigning

Weights of all the extracted snippet units have to be
calculated to identify most relevant and most important
snippet units. The same Weight assigning module is used to
calculate the weights of snippet units too. So using equation
1 to equation 6, the three scores according to the query
terms, tile words and meta keywords are calculated and
then added these three scores to get the weight of a snippet
unit.

C. Snippet Unit Ranking

After calculating weights of all the snippet units of the
top three ranked sentences, they are sorted in descending
order of their weight in the same way of Sentence Ranking
module. In this process if any two or more than two snippet
units get equal weight, then they get same rank. So, this
Snippet Unit Ranking module provides the ranked list of
snippet units.

VIII. SNIPPET GENERATION

This is the final and most critical module of this system.
This module generates the Snippet from the sorted snippet
units. As [12] using equation 8, the module selects the
ranked snippet units subject to maximum length of the
snippet has been reached.

i i
i

l S L (8)

where li is the length (in no. of words) of snippet unit i, Si is
a binary variable representing the selection of snippet unit i
for the snippet and L (=100 words) is the maximum length
of the snippet.

Now, the selected snippet units are reordered according
to their order of appearance in the text. If two consecutive
snippet units are selected then they are concatenated
without an ellipsis other wise two snippet units are
concatenated with ellipsis. After contamination of the
selected snippet units, all the query words in the generated
snippet are tagged with the html tag to highlight them in the
output. So, Html tagged generated snippet are returned for
display as shown in the figure 3, 4 and 5.

Fig. 3. Screen shot of the output page of the Bengali mono lingual search

in CLIA

Fig. 4 Screen shot of the output page of the Bengali to Hindi cross lingual

search in CLIA

Pinnaki Bhaskar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4603 - 4609

4607

Fig. 5 Screen shot of the output page of the Bengali to English cross

lingual search in CLIA

IX. CHALLENGES

During this work some difficulties or challenges were
faced which are described bellow:

1. Sometimes query word appears only in the title or
url, not in the body text of the web page. In this case,
snippet is generated with the help of the title words
and meta keywords if available. So the snippet does
not contain the query words.

2. Sometimes the retrieved document is not an English
page though some part of it is written in English
script, so language identifier identifies it as an
English page. Some English page contains some
non-English characters or words written in English
script. In both the cases, the generated snippet is in a
language other than the document language.

3. Some page is not a Hindi / Marathi page, it is a
Marathi / Hindi page. But language identifier
identifies it as a Hindi / Marathi page. The generated
snippet is not in the identified document language.

X. EVALUATION

As discussed before, evaluation of snippet or judgment
the relevancy of a snippet is a one of the most debatable
issue. So, subjective evaluation has been done to evaluate
the generated snippet. Scoring parameter was set between 0
to 1, 0 for worst snippet and 1 for the best snippet. The
evaluators gave a score between 0 to 1 as per how much
he/she satisfied with generated snippet. Total 22 evaluators
in 7 different languages have evaluated the output of this
system. The evaluation scores for all the seven languages
have been shown in the table 2.

TABLE II EVALUATION SCORE OF SNIPPET

Language
Evaluation

score
Language

Evaluation
score

English 1.00 Punjabi 0.90

Hindi 0.87 Tamil 0.81

Marathi 0.75 Telugu 0.76

Bengali 0.70 Overall 0.83

The evaluation score for English is highest and 100%.
The evaluation scores are very satisfactory also for the
Indian languages except for Tamil and Telugu. The CLIA
system has very low performance for p@5 and p@10 i.e
the ranking is very poor. So, most of the retrieved pages are
not relevant to the query. As the retrieved documents are to
relevant to the query the generated snippets are also not
relevant to the query. Hence evaluators were not satisfied
with the generated snippets especially for these two
languages, Tamil and Telugu. Because they have judged
the relevance of the snippet respect to the query not to the
retrieved document. In the figure 6, a graph shows the
snippet and ranking scores for each language.

0

0.2

0.4

0.6

0.8

1

Ranking

Fig. 6 Chart showing the evaluation scores of Ranking and Snippet
Generation for each language

XI. CONCLUSION AND FUTURE WORKS

The Snippet Generation module is the main module of
the output generation of CLIA system. But this module has
many more dependency in the system, like Snippet
generation is heavily dependent on the output of the parser
i.e. the parse text and on the query. But in the current CLIA
system the basic Html parser of Nutch are used to parse the
html files. So the parse text is not cleaned enough to
generate the snippet from it. All the anchor texts or menu
texts are merged with actual sentences especially to the first
and last sentences of the document. So, sometimes snippet
contains some garbage or junk words like links or menu. If
the parser extracts only the main text of the documents and
cleans the parse text, then generated snippet will be more
accurate, fluent.

Another problem for Snippet Generation module is
query formation for cross lingual search. Now the current
query translation module is not confident enough to give
only one translation of the Indian language query. It
translates the query words with the help of a bilingual
parallel word list. So, when a query word is not found in
the list then it is transliterated. So, the coverage of the
parallel list is an issue. But the transliteration system has
low accuracy, so that it always gives five transliterated
output for each word. Hence if a query has three words and
none of them are found in the parallel list, then the
translated rather transliterated query will have 15
transliterated query words. To reduce the inaccuracy of the
query translation module the query in the cross lingual
search formed completely as OR between those 15
translated query words. This kind of query formation

Pinnaki Bhaskar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4603 - 4609

4608

technique reduces the performance of the system and
retrieved less relevant documents and percussion of the
system decreases.

In future we are planning to use the WordNet to match
the synonyms. In the next phase of the CLIA system will
incorporate the NE and MWE tags in the parse text as well
as in the query. If we get the parse text with NE and MWE
tags and query too, then sentence scoring for the Snippet
generation will improve and more domain relevant snippet
will generate as the location NEs can be identified with
help of the NE and MWE tags and will give more weight to
the containing sentence.

ACKNOWLEDGMENT

The work has been carried out with support from
Department of Information Technology (DIT), Govt. of
India funded Project Development of “Cross Lingual
Information Access (CLIA)” System.

REFERENCES
[1] Yu Huang, Ziyang Liu and Yi Chen, Query Biased Snippet

Generation in XML Search. In SIGMOD’08, Vancouver, BC,
Canada, 2008.

[2] Carbonell, J., Goldstein, J. 1998. The Use of MMR, Diversity-
based Reranking for Reordering Documents and Producing
Summaries. ACM SIGIR, pp. 335--336.

[3] Knight, K., Marcu, D. 2000. Statistics-based summarization --- step
one: Sentence compression. The American Association for
Artificial Intelligence Conference (AAAI-2000), pp 703--710.

[4] Barzilay, R., Elhadad, N., McKeown, K. R. 2002. Inferring
strategies for sentence ordering in multidocument news
summarization. J. Artificial Intelligence Research. 17, 35—55

[5] Radev, D.R., Jing, H., Styś, M., Tam, D. 2004. Centroid- based
summarization of multiple documents. J. Information Processing
and Management. 40, 919–938

[6] Lin, C.-Y., Hovy, E.H. 2002. From Single to Multidocument
Summarization: A Prototype System and its Evaluation. ACL, pp.
457-464.

[7] Hardy, H., Shimizu, N., Strzalkowski, T., Ting, L., Wise, G. B.,
Zhang. X. 2002. Cross-document summarization by concept
classification. SIGIR, pp. 65--69.

[8] Mani, I., Bloedorn, E. 2000. Summarizing Similarities and
Differences Among Related Documents. J. Information Retrieval,
1(1), 35-67

[9] Zhang, Y., Ji, X., Chu, C. H., Zha, H. 2004. Correlating
Summarization of Multisource News with KWay Graph
Biclustering. J. SIGKDD Explorations. 6(2), 34-42Association for
Computing Machinery. 1983. Computing Reviews, 24(11):503-512.

[10] Varadarajan, R., Hristidis, V. 2006. A system for query specific
document summarization. CIKM, pp. 622--631.

[11] Paladhi, S., Bandyopadhyay, S. 2008. A Document Graph Based
Query Focused Multi-Document Summarizer. The 2nd
International Workshop on Cross Lingual Information Access
(CLIA), pp. 55-62

[12] P. Bhaskar and S. Bandyopadhyay, A Query Focused Multi
Document Automatic Summarization, In the 24th Pacific Asia
Conference on Language, Information and Computation (PACLIC
24), Tohoku University, Sendai, Japan, 2010.

[13] P. Bhaskar and S. Bandyopadhyay, A Query Focused Automatic
Multi Document Summarizer, In the International Conference on
Natural Language Processing (ICON), IIT, Kharagpur, India, 2010.

[14] A. Tombros and M. Sanderson. Advantages of Query Biased
Summaries in Information Retrieval. In SIGIR, 1998.

[15] A. Turpin, Y. Tsegay, D. Hawking, and H. E. Williams, Fast
Generation of Result Snippets in Web Search. In SIGIR, 2007

[16] The Nutch website. [Online]. Available: http://nutch.apache.org/
[17] The Lucene website. [Online]. Available: http://lucene.apache.org/
[18] (2012) List of Unicode characters on Wikipedia. [Online].

Available: http://en.wikipedia.org/wiki/List_of_Unicode_characters

Pinnaki Bhaskar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4603 - 4609

4609

